

(Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka & Affiliated to VTU, Belagavi.) KOLAR – SRINIVASAPUR ROAD, KOLAR – 563101, KARNATAKA.

E-Mail: cbitkolar@gmail.com, Website: www.cbitkolar.edu.in Mobile No: 6360281836

Department of Mechanical Engineering <u>Course File</u>

Course Name	FINITE ELEMENT
20	METHODS
Course Code	18ME61
Academic Year	2022-23
Course Co-ordinator	SANDEEP S N

(Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka & Affiliated to VTU, Belagavi.) KOLAR – SRINIVASAPUR ROAD, KOLAR – 563101, KARNATAKA.

E-Mail: cbitkolar@gmail.com, Website: www.cbitkolar.edu.in Mobile No: 6360281836

CONTENTS						
1. Course Details	1.1 Preliminary Information					
	1.2 Course Contents					
Course Plan	1.3 Literature referred for the Course					
2. Course Plan	2.1 Course outcomes (COs)					
	2.2 CO Attainment					
. Course Plan	2.3 Mapping of COs with POs & PSOs					
	2.4. Attainment in SEE					

(Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka & Affiliated to VTU, Belagavi.) KOLAR – SRINIVASAPUR ROAD, KOLAR – 563101, KARNATAKA.

E-Mail: cbitkolar@gmail.com, Website: www.cbitkolar.edu.in Mobile No: 6360281836

COURSE DETAILS

1.1 Preliminary Information

Course Name	FINITE ELEMENT METHODS
Course Code	18ME61
Academic Year	2022-23
Semester	VI
Course Co-ordinator	SANDEEP S N

1.1.1 Course Objectives:

- 1. To learn basic principles of finite element analysis procedure.
- 2. To learn the theory and characteristics of finite elements that represent engineering structures.
- To learn and apply finite element solutions to structural, thermal, dynamic problem to develop
 the knowledge and skills needed to effectively evaluate finite element analyses.

1.1.2 Internal assessment (IA) marks:

- 1. There shall be a maximum of 40 for CIE marks.
- 2. The internal assessment marks shall be based on the average of three tests plus the assignment mark (Max. 10 marks).

1.1.3 Eligibility for passing

For a pass in the subject, the candidate shall secure minimum of 40% of the maximum marks prescribed in the university examination and 40% of marks in the aggregate inclusive of the internal assessment mark.

Sl. No.	Evaluation Type	Maximum Marks	Minimum passing marks
1	CIE	40	16
2	SEE	60	24

1.1.4 The Program Educational Objectives (PEOs)

PEO1: Graduates will utilize their engineering expertise and critical thinking skills to excel in diverse technical roles within industry, academia, or as innovative entrepreneurs.

(Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka & Affiliated to VTU, Belagavi.)

KOLAR – SRINIVASAPUR ROAD, KOLAR – 563101, KARNATAKA.

E-Mail: cbitkolar@gmail.com, Website: www.cbitkolar.edu.in Mobile No: 6360281836

PEO2: Graduates will actively participate in lifelong learning and professional development, pursuing continuing education in mechanical engineering or related fields.

PEO3: Graduates will demonstrate effective communication skills, strong teamwork abilities, leadership qualities, and a commitment to ethical conduct.

1.1.5 Program Outcomes (PO's)

The graduates of the Mechanical Engineering department will have the ability

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge and research methods
 including design of experiments, analysis and interpretation of data, and synthesis of the information to
 provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments.

(Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka & Affiliated to VTU, Belagavi.)

KOLAR – SRINIVASAPUR ROAD, KOLAR – 563101, KARNATAKA.

E-Mail: cbitkolar@gmail.com, Website: www.cbitkolar.edu.in Mobile No: 6360281836

12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

1.1.6 Program Specific Outcomes (PSO's)

By the completion of Mechanical Engineering program, graduates are able to

PSO1: Graduates will be able to utilize engineering principles and tools in the design, production, and analysis of mechanical systems.

PSO2: Graduates will be proficient in using modern technical tools to solve complex mechanical engineering problems.

(Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka & Affiliated to VTU, Belagavi.) KOLAR – SRINIVASAPUR ROAD, KOLAR – 563101, KARNATAKA.

E-Mail: cbitkolar@gmail.com, Website: www.cbitkolar.edu.in Mobile No: 6360281836

1.2 Course Contents

			ITE ELEMENT METHO		
Subject (18ME61	I.A. Marks	40	
Hours / \		05	Exam Hours	03	
Total Ho	10994350,117	50	Exam Marks	60	
CREDIT					Twee services
Module No.	Contents				Teaching Hour
1	Engineering Method. Boundary transfer and Galerkin's n criteria, Disc Location of and Plain str.	applications of fi conditions: Hom fluid flow probl nethod, Displacem cretisation process nodes. Strain- dis ain conditions, ten	ent Method: General steps of mite element method. Advantageneous and non-homogenems. Potential energy method in method of finite elements, Types of elements: 1D, 2D splacement relations, Stress-apperature effects. ex, complex and multiplex elements.	tages of the Finite Elen eneous for structural, I od, Rayleigh Ritz meth t formulation. Converge and 3D, Node number strain relations, Plain st	heat nod, ence 10 ing, ress
2	Introduction stiffness mat stiffness ma Trusses, Lin 2Delements. in natural co 4), Eight-No Lagrange int Numerical integrals. Fo Solution for	n to the stiffness rix, Derivation of trix by superposi- near interpolation Higher order inte- ordinates, Constan- odded Hexahedra erpolation function integration: Gau- rce terms: Body for displacement, stre-	s (Displacement) method: stiffness matrix for a spring tion. One-Dimensional Eleman polynomials in terms of expolation functions for 1D quant strain triangle, Four-Noddent Element (HEXA 3 8), 2 ans. The sissian quadrature one point porce, traction force and point strain triangle to the point porce, traction force and point strain in 1D straight bath and penalty approach, Anal	Introduction, Derivation element, Assembly the trents-Analysis of Bars local coordinate's for uadratic and cubic element (Tetrahedral Element (TeD iso-parametric element), two point formulae, loads, Numerical Problemers, stepped bars and tape	otal and 1D, ents TET ent, 2D ms:
3	Beams and stiffness mat propped can stepped bea distributed to	Shafts: Boundary rix based on Eule tilever beams, Nur ms using direct bad. Shafts: Finite ele	conditions, Load vector, Her or-Bernoulli beam theory, Exa merical problems on simply s stiffness method with co ment formulation of shafts,	rmite shape functions, Be amples on cantilever bea supported, fixed straight oncentrated and unifor	ms, and mly 10
4	equation: co vibration me composite se Fluid Flow:	onduction, convection, Problems we ctions, straight fin Flow through a	ions of heat transfer: Enerction, radiation, 1D finite ith temperature gradient and is. porous medium, Flow through hydraulic net works.	element formulation us heat fluxes, heat transfe	r in 10
5	Axi-symmet with triangu subjected to a Dynamic C Consistent e axisymmetric matrix of ba	ric Solid Element lar elements, Nur surface forces, poi considerations: Felement mass ma ce triangular element	ts: Derivation of stiffness magnetical solution of axisymment loads, angular velocity, preformulation for point massistrix of one dimensional beant, quadrilateral element, bealement, Evaluation of eiger	netric triangular element essure vessels. s and distributed mas ar element, truss element eam element. Lumped m	ses, ent, nass

(Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka & Affiliated to VTU, Belagavi.) KOLAR – SRINIVASAPUR ROAD, KOLAR – 563101, KARNATAKA.

E-Mail: cbitkolar@gmail.com, Website: www.cbitkolar.edu.in Mobile No: 6360281836

1.3 Literature referred for the Course

Book	Code		Public	cation Informat	ion
Type	2040	Title & Author	Edition	Publisher	Year
	T1	A first course in the finite element method, ,by Logan, D. L.	6th Edition	Cengage Learning	2016
Text Books	Т2	Finite element method in engineering by Rao, S. S.	5th Edition	Pergaman Int. Library of Science,	2010
	Т3	Finite element method by Thyagaraj N R et.al.	1 st Edition	Sunstar Publications	2018
Reference	R1	"Finite Element Method"- by J.N.Reddy, Finite Elements Procedures, by Bathe K. J.	Internatio nal Edition	McGraw - Hill.PHI.	
Books	R2	"Concepts and Application of Finite Elements Analysis"-by Cook R. D., et al.	4th Edition	Wiley & Sons	2003

(Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka & Affiliated to VTU, Belagavi.) KOLAR – SRINIVASAPUR ROAD, KOLAR – 563101, KARNATAKA.

E-Mail: cbitkolar@gmail.com. Website: www.cbitkolar.edu.in Mobile No: 6360281836

2. COURSE PLAN

2.1 Course Outcome:

Subject: FINITE ELEMENT METHODS

Subject Code: 18ME61

CO1	Identify the application and characteristics of FEA elements such as bars, beams, plane and iso-parametric elements.
CO2	Develop element characteristic equation and generation of global equation.
CO3	Formulate the Finite Element model for beams and shafts subjected to various loading conditions.
CO4	Develop element characteristic equations and generation of global equations for heat transfer and fluid flow problems.
CO5	Apply suitable boundary conditions to a global equation for axi-symmetric and dynamic problems.

2.2 CO Attainment:

2.2.1: Internal Attainment

	Faculty Name Course		BE	SAI	NDE	EP S	N		43																												
			BE							BI	RANCH			I	MEC	HAN	ICAL	ENG	INE	ERIN	IG			SI	JBJEC	T			F	NIT	ELI	ME	NT M	ETH	IODS		
						SEM		6		SU	B. COD	E		18N	E61			W.		TOT	AL N	D. OF 9	TUDE	NTS					7		YE	AR		7	2022-	23	_
	CONTRACT SO					190										Attain	ment	for CO										US	N/ F								-
							TEST 1			200						T	EST 2							Ξ			TEST	3		V			7				
	Main Questions		1			2		3			4		1		- 2		T	3			4		1			2			3		4	-	7				
	Sub Questions	a	b	C	8	b	a	_	_	8		a	b	i	T	T	8	b		a	b	8	b	c	а	b	0	a	b	c a	I	0					Τ
	Mapped CO	_	C01	C01	-	\rightarrow	CO	1 CO	1	C01		CO.	CO2	C)2		CO3	CO3		03	CO3	CO	5 005		005		C	04		CC)4		CO1	CO2	CO3	C04	C
	Max. Marks	9	8	8	10	15	5	20		25		10	15	2	5		10	15		10	15	15	10		25		2	25		2	5	T	50	25	25	25	
SI.	ic. USN									41.70					521																						
	1CK19ME002									25				2	3			10				15	10					T		2	0		25	23	10	20	
			2									9	1									2	10							2			2	10	0	20	T
		-				7	4	1	-					1	5			12				15	9							2.	2		29	15	12	22	
						15	5	-	-					- 8							9	15	10					T		2	5		32	8	9	25	
		6	4	4			5	10	_			10	13				10	7				- 5	10							23	1		29	23	17	25	1
- 6																18																	AB	AB	AB	AB	1
1	1CK21ME401				9	15	4					5	9								9	14								2	2		28	14	9	22	
																															Ш	ΣCC	Ot 145	93	57	134	
																100	CO		CO1	CO2	CO3 C	04 CO	5							COt (Redu	ction)	87	56	34	80	1
Th	eshold Values fo	r At	tain	men	t Ca	lculat	ior									18	ΣCO		180	90	90	90 90								28 F						-	
A	ttainment level	3	%	2	%	1	%		F	Reduci	ion Fa	ctor				100	ΣCO	t	87	56	34	80 70															
nt	rnal Assessmen	>=	70	>=	60	>=	50		13		3/5					8	%		48	62	38	89 77				The	Ave	rag	e Inte	ernal	Att	ainn	ent				
Т											010					At	tainn	ant										3602	vel 1								

(Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka & Affiliated to VTU, Belagavi.) KOLAR – SRINIVASAPUR ROAD, KOLAR – 563101, KARNATAKA.

E-Mail: cbitkolar@gmail.com, Website: www.cbitkolar.edu.in Mobile No: 6360281836

2.2.2: AQSM Attainment

	Assignment	A1	A2	AVG
	Max Marks	10	10	10
Sl. No.	USN			
1	1CK19ME002	10	10	10
2	1CK19ME009	10	10	10
3	1CK20ME001	10	10	10
4	1CK20ME002	10	10	10
5	1CK20ME003	10	10	10
6	1CK20ME004	AB	AB	AB
7	1CK21ME401	10	10	10

Threshold Valu	ies for Att	ainmen	t Calcu	lation		
Attainment level	3	%	2	%	1	%
AQSM Assessment	>=	70	>=	60	>=	50

The AQSM Attainment Level is "3"

2.2.3 SEE Attainment:

Sl. No.	USN	Name	SEE Marks (60)
1	1CK18ME002	AKASH M	39
2	1CK18ME009	GURUKIRAN A	11
3	1CK20ME001	ESHWAR RAJ	21
4	1CK20ME002	NANDISH K V	42
5	1CK20ME003	SAMREEN TAJ	38
6	1CK20ME004	VEDANTH SINGH K T	X
7	1CK21ME401	SATISHA N	37

(Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka & Affiliated to VTU, Belagavi.) KOLAR – SRINIVASAPUR ROAD, KOLAR – 563101, KARNATAKA.

E-Mail: cbitkolar@gmail.com, Website: www.cbitkolar.edu.in Mobile No: 6360281836

Subject Name	No of students appeared for SEE	Class Average Marks in SEE	Number of Students scoring above class average in SEE	Percentage of students scored above class average in SEE	Attainment level (AL)
Finite Element Analysis (18ME61)	6	31	4	66.67 %	3

If percentage of students scored above class Average in SEE>=60% Attainment level is 3

Else if <60% but >=50% Attainment level is 2

Else if <50% but >=40% Attainment level is 1

Else Attainment level is 0

2.2.4 Overall CO Attainment:

СО	Internal Attainment	AQSM Attainment	CEE Attainment	SEE attainment	Overall CO Course attainment
CO1	0	3	0.75	3	2.1
CO2	2	3	2.25	3	2.7
CO3	0	3	0.75	3	2.1
CO4	3	3	3	3	3
CO5	3	3	3	3	3
			Average A	Attainment =	2.58

CEE attainment = 0.75 * Internal attainment + 0.25 * AQSM attainment Overall CO Course attainment = 0.6 * SEE attainment + 0.4 * CEE attainment

2.3 Mapping of COs with POs and PSOs:

COs	POs													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	1 2	
CO1	3	3										1	2		
CO2	3	3										1	2		
CO3	3	2	2									1	2		
CO4	3	3	2									1	2		
CO5	2	2	2									1	2		
Average	2.8	2.6	2									1	2		

(Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka & Affiliated to VTU, Belagavi.) KOLAR – SRINIVASAPUR ROAD, KOLAR – 563101, KARNATAKA.

E-Mail: cbitkolar@gmail.com, Website: www.cbitkolar.edu.in Mobile No: 6360281836

2.4 CO/PO/PSO Attainment

COs	POs	POs												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2.1	2.1										0.7	1.4	
CO2	2.7	2.7										0.9	1.8	
CO3	2.1	1.4	1.4									0.7	1.4	
CO4	3	3	2									1	2	
CO5	2	3	2									1	2	
Average	2.4	2.4	1.4									0.9	1.7	

PO attainment can be computed for a batch using the below formula.

PO/PSO attainment = (CO attainment * CO-PO Mapping)/Max correlation strength